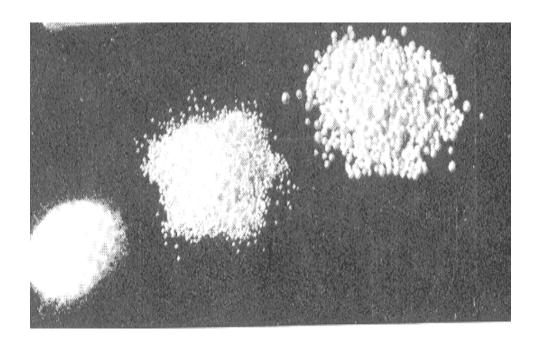


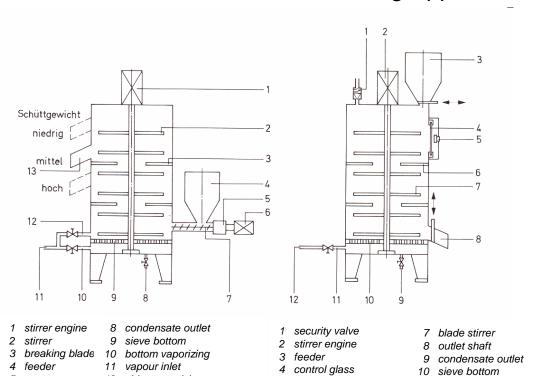
Classification of polymer foams


Classification of foaming methods and important blowable polymeric materials

Foams	Foams with eaquilized density deviation		Integral foams		
	Method	Material	Method	Material	
Initial material					
thermoplastic melts	Extrusion Compression molding Calendering	PS SB ABS PVC PE	Extrusion Injection molding Calendering Mold foaming	PS SB ABS PVC PE PC, PPO	
blowable particles, paste	EPS technology PVC paste foaming	PS PVC	-	-	
reactive liquid initial components	Continuous or discontinuous foaming in molds or conveyor belts or free foaming	PUR, PF, UF	Reaction mold foaming	PUR	

EPS Technology

EPS Material



Pentane loaded PS

Pre-expanded PS

Expanded PS

Pre-foaming Apparatus

Continuous pre-foamer

12 side vapourizing

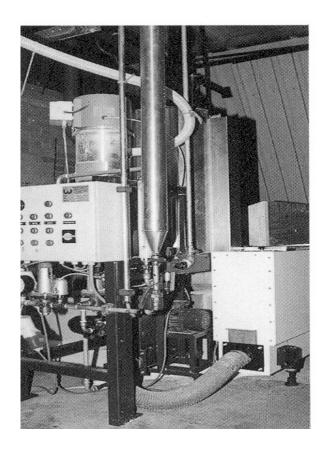
13 outlet shaft with

height regulation

5 gear

6 screw driver

7 feeding screw


Discontinuous pre-foamer

11 bottom vaporizing

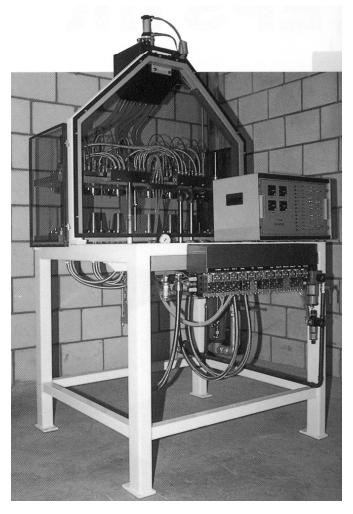
12 vapour inlet

5 control equipment

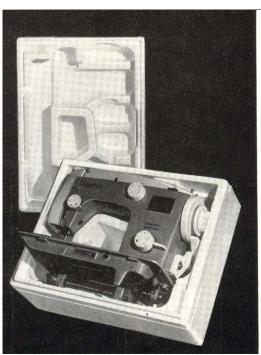
6 breaking blade

Intermediate Storage

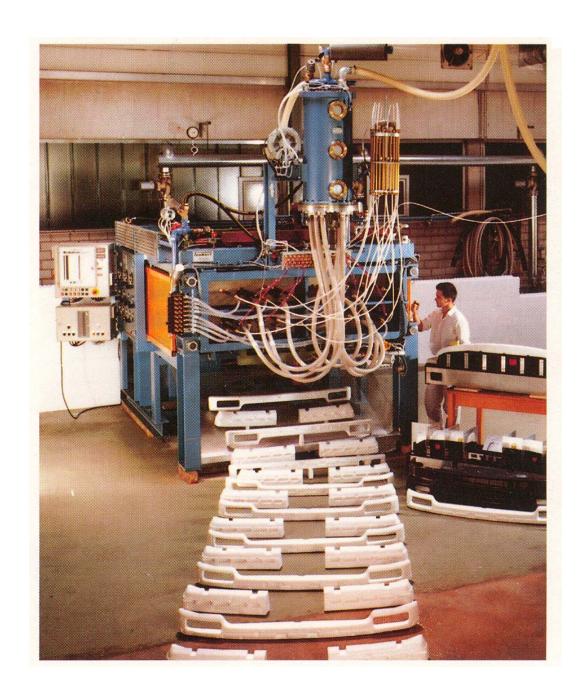
Stabilization of cellular structure


- Diffusion of blowing agent out of the cells
- Diffusion of air into the cells

EPS Technology



EPS Material


Pentane loaded PS Pre-expanded PS Expanded PS

EPS Molding Machine

EPS Product for Packaging

Bumper Production

EPS

EPP

EPE

EPS Block Production

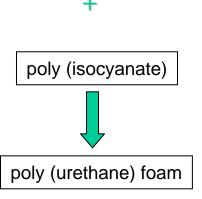
POLYURETHANE

ALCOHOL + ISOCYANATE → URETHANE GROUP

 $R' - OH + NCO - R \longrightarrow R - NH - CO - O - R'$

Wurtz 1849

DI-ALCOHOL + DI-ISOCYANATE → POLY URETHANE


HO - R' - OH + OCN - R - NCO → - O - R' - O - CO - NH - R - NH - CO -

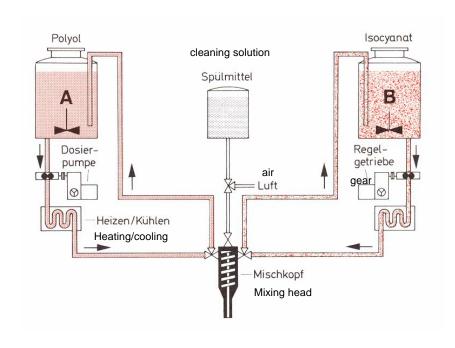
Polyaddition

Bayer 1939

PUR FOAM Generation

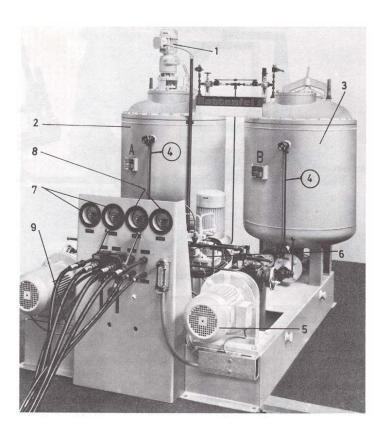
polyole + water and/or liquid blowing agent + catalyst

$$R - N = C - O + HOOC - R' \longrightarrow R - NH - CO - O - COR'$$

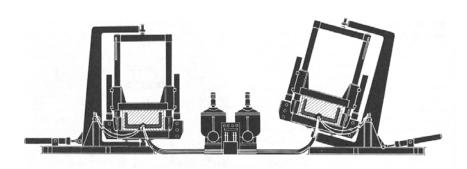

$$\longrightarrow R - NH CO R' + CO_2$$

WURTZ 1854!

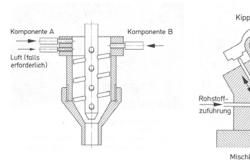
Hoechtlen/Droste 1940 (Leverkusen)

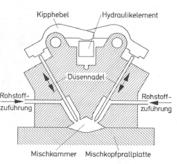

"mistake": carboxy group in polyester

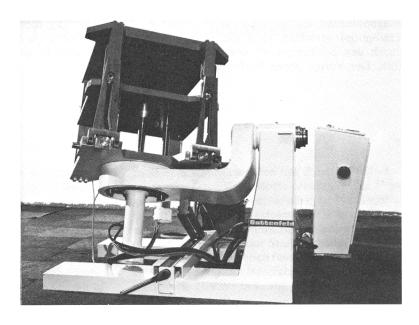
PUR FOAMING



- stirrer for polyole
 double wall container for polyol
- 3 double wall container for isocyanate
- 4 filling control glasses
- 5 feeding unit for polyole


- 6 hydraulic device for mixing head driving
- 7 pressur control polyole
- 8 pressure control isocyanate
 9 components pipeline to mixing head


PUR Foaming Reaction Injection Molding


Injection device

Stirring mixing head

Injection mixing head

PUR mold carrier

PUR plates production by floating top-paper procedure

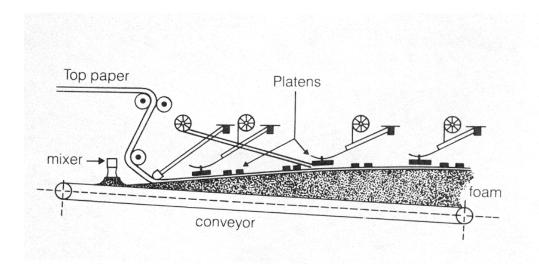


Table 4-3 Typical formulation for making polyester-based flexible foam (slabstock)

Component	'Technical' grade foams (parts by weight)		Laminating grade foams (parts by weight)		Formulation range				
'Daltorez' SF 'Daltorez'RB4	100	100	100	100	100	100	100		
80:20-TDI (Index) ³⁾ 65:35-TDI (Index) ³⁾	-	_	105	90	90	100	85	to	100
Water	105	105	-	-	-	-	85	to	115
	5.0	3.0	3.7	3.6	3.6	3.8	2.0	to	5.21)
'Lubrol' SF2	1.0	1.0	1.0	1.0	1.0	1.0	0.7	to	1.0
N-Ethyl morpholine	-	-	2.5	1.3	1.5	2.0	1.0	to	2.5
N-Dimethlcycolohexylamine	0.8	0.6	-	0.05	0.1	_	0.01	to	0.9
N-Dimethylcetylamine	-	-		-	-	0.28	0.01	to	0.4
Polyurax Silicone ²⁾ SE-232	-	0.7	-	0.9	0.8	1.0	0.6	to	1.0
Polyurax Silicone SE-236	0.8	-	1.0	-	_	- 1	0.6	to	1.0
Flame retardants	-	-	8.0	_	_		2.0	to	15
Pigments/dyes	0.05	0.05	0.05	-	0.01	0.05	0.001	to	5
Foam density (kg/m³)	20	33	29	30	29	26.5	17	to	40

The maximum safe level of water depends on the formulation used, the scale of manufacture, the ambient conditions and other factors affecting the maximum reaction temperature (See Chapter 10).

2 Or equivalent materials, Niax Silicone surfactants.

³⁾ The amount of TDI used is expressed as the 'TDI Index' (see page 62).